
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS RI
__ftj RE COMPLET4ING F _RM

REPz,' ..u%8EQ 2 GOVT ACCESSION NO a$' CAT ALOG jf9
AI Memo 1249 IU '

T TITYLE (Af'd Sstb(fit~) S TYPE 09 REPORT A PERIOD COvERED

The Supercomputer Toolkit and its Applications memorandum

6 PERFORMING ORG. REPORT NUMSfR

-~ R~e)6. CONTRACT OR GRANT NUMBER(@)

[4% Harold Abelson, Andrew A. Berlin, Jacob N00014-89-J-3202

O Katzenelson, William H. McAllister, Guillermo

00 J. Rozas, and Gerald Jay Sussman ______________

4"rOPMING OPIGANIZATION NAME ANO ADDRESS IC0 PROGRAm ELEME.IN PROJEC', T ASK

1.0 Artificial Intelligence Laboratory AE OKUI UBR

545 Technology Square

CI Cambridge, MIA 02139 ______________

N TROLLING OFFICE NAME ANO0 ADDRESS 12. REPORT DATE

~1. Advanced Research Projects Agency July 1990

1400 Wilson Blvd. 1S. NUMBER Of PAGESO Arlington, VA 22209 16
INITORING AGENCY NAME A ADORESS(of difftet fromf C@ottroffiE Office) It. SECURITY CLASS. tat IhI. fspfl)

S Office of Naval Research UNCLASSIFIED
Information Systems _______________

Arlington, VA 22217 So ILAS FICI4 ON DOWN RAIN

IS. DISTRIBUTION STATEMENT (of this Repott)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of We abst,.ce entered i Stock 20, of dIifffen fm Aset)-

S. SUPPLEMENTARty NOTES

None

19. KEY WORDS (Ceflunue onl reverse.. Olst R69*464sy OW Ideflhlip by 61091% twbeu)

special-purpose hardware

20. ABSSTRACT (Conelnue an ,.verse side It 01*00MAnd IfltefI 6F block nub"

3 The Supercomputer Toolkit is a proposed family of standard hard-
ware and software components from which special-purpose machines
can be easily configured. Using the Toolkit, a scientist or an engineer,
starting with a suitable computatioal, problem, will be able to readily
configure a special purpose multipro~essor that attains supercomputer-
class perforniance on that probleu., at a fraction of the cost of a general
purpose supercomputer. (-(con't. on back)I

DID ,:21473 E0DITION Of' 1 NOV 65 1S OBSOLETEUCASIFIE
JA ~~S/It 0!02-014,6601 1INLSSFE

SaCURITY CLASSIFICATION OF THIS PAGE (When Doe 201000

Block 20 continued:

The Toolkit is currentlX being built as a joint project between
Hewlett-Packard and MIT. The software and the applications are in
various stages of development and research.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo 1249 July 1990

The Supercomputer Toolkit and its Applications
Harold Abelson 1 , Andrew A. Berlin1 , Jacob Katzenelson 2 , William H.

McAllister3 , Guillermo J. Rozas1 , and Gerald Jay Sussman1

Abstract

The Supercomputer Toolkit is a proposed family of standard hard-
ware and software components from which special-purpose machines
can be easily configured. Using the Toolkit, a scientist or an engineer,
starting with a suitable computational problem, will be able to readily
configure a special purpose multiprocessor that attains supercomputer-
class performance on that problem, at a fraction of the cost of a general
purpose supercomputer.

The Toolkit is currently being built as a joint project between
Hewlett-Packard and MIT. The software and the applications are in
various stages of development and research.

**This paper is to appear in the Jerusalem Conference on Information Technology V,
October 1990

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence
research is provided in part by the Advanced Research Projects Agency of The Department
of Defense under the Office of Naval Research contract N00014-89-J-3202.

1Artificial Intelligence Laboratory, and Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology.

2Department of Electrical Engineering, Technion - Israel Institute of Technology.
3 Hewlett-Packard Corp.

90 08 018

The Supercomputer Toolkit and its Applications

Harold Abelson', Andrew A. Berlin1 , Jacob Katzenelson 2, William H.
McAllister', Guillermo J. Rozas', and Gerald Jay Sussman'

Abstract

The Supercomputer Toolkit is a proposed family of standard hardware
and software componet.s from which special-purpose machines can be easily
configured. Using the Toolkit, a scientist or an engineer, starting with a suit-
able computational problem, will be able to readily configure a special pur-
pose multiprocessor that attains supercomputer-class performance on that
problem, at a fraction of the cost of a general purpose supercomputer.

The Toolkit is currently being built as a joint project between Hewlett-
Packard and MIT. The software and the applications are in various stages of
development and research.

I' For

I C

__.Y Cordes

1Artificial Intelligence Laboratory, and Department of Electrical Engineering and Com-
puter Science, Mamachusetts Institute of Technology.

2Department of Electrical Engineering, Technion - Israel Institute of Technology.
3Hewlett-Packard Corp.

I

The Supercomputer Toolkit and its Applications

1 Introduction

The Supercomputer Toolkit is a proposed family of standard hardware and
software components from which special-purpose machines can be easily con-
figured. Using the Toolkit, a scientist or an engineer, starting with a suitable
computational problem, will be able to readily configure a special-purpose
multiprocessor that attains supercomputer-class performance on that prob-
lem, at a fraction of the cost of a general-purpose supercomputer.

Each type of Toolkit hardware module will be implemented as an individ-
ual board. The boards fit into a common chassis that furnishes only power
and ground. Special cables are used to achieve high-speed communication
among boards and to distribute the clock. A user assembles a machine by
plugging in the required modules and connecting the cables appropriately.
When a particular machine is no longer needed, it can be disassembled,
and its modules can be reassembled into other configurations. As of June,
1990, we have designed, fabricated, and are beginning to benchmark the ba-
sic Toolkit processor module, tailored for high-performance double-precision
floating-point operations. A typical configuration will include several proces-
sor modules. Other hardware modules we hope to develop will provide for
mass memory and high-speed data-acquisition.

The intent of this arrangement is to make it simple and relatively in-
expensive to configure special-purpose computational engines. Yet even if
appropriate hardware modules were readily available, these would not be
of much use if programming each new machine entailed a major software-
development effort, or required an intense analysis to exploit the available
parallelism effectively. We believe that, for suitable scientific-computing ap-
plications, one can compile extremely high-performance code from high-level
languages, and moreover, that the compiler can automatically synthesize a
pattern of interconnection well-matched to the program being compiled, as
well as automatically schedule the computation to make effective use of the
available parallelism. In addition to this novel compiler, the software support
for the Toolkit will include an assembler, a simulator, and debugging tools.
There will also be standard software components, such as a scientific library,
for inclusion in Toolkit programs.

2

We envision that the Toolkit will be used as follows:
One begins with an algorithm that performs the costly inner loop of a

computation that is important enough to warrant constructing a special-
purpose machine. For example, the simulation part of a multidimensional
optimization in the computer-aided design of an analog circuit, or the inte-
gration of the differential equations required to achieve the real-time control
of a nonlinear process, are appropriate for Toolkit implementation.

The Toolkit software will be used to compile the program, targeted for
a number of different Toolkit hardware configurations, some proposed b,
the user, others generated automatically by the Toolkit compiler itself. The
compiler will also produce, for each configuration, a simulation that the user
can run on the host machine to help evaluate price-performance tradeoffs.
After a configuration has been selected, the user will obtain the required
modules, wire them together, and connect the machine he has built to a host
computer. The configuration will be verified by means of diagnostics that
are automatically generated and loaded from the host. The target program
will then be loaded, and the new machine will be ready to be used by host
programs as a back-end processor.

2 Historical Motivation

The Digital Orrery [2], constructed in 1983-1984, is a special-purpose numer-
ical engine optimized for high-precision numerical integrations of the equa-
tions of motion of small numbers of gravitationally interacting bodies. Using
1980 technology, the device is about 1 cubic foot of electronics, dissipating
150 watts. On the problem it was designed to solve, it was measured to be
60 times faster than a VAX 11/780 with FPA, or 1/3 the speed of a Cray 1S.

The Orrery achieves this performance at modest cost for two reasons.
Its communication paths are specialized for the solar-system problem. It is
organized as a ring of up to ten processing elements, one for each body to
be simulated. The algorithm passes the states of the n bodies around the
ring, allowing the computation of all n2 accelerations in order n time, with
negligible communication cost. Additionally, the program that performs the
integration completely exploits the data-independence that is inherent in the
problem. All available cycles are used for floating-point operations; none are
used to support data-structure references.

3

In 1988, G. Sassman and J. Wisdom used the Orrery to demonstrate that
the long-term motion of the planet Pluto, and by implication the dynamics of
the Solar System, is chaotic [3]. This required integrating the positions of the
outer planets for a simulated time of 845 million years, which required run-
ning the Orrery continuously for more than three months. Before the Orrery,
high-precision integrations over simulated millions of years were prohibitively
expensive, and astrophysicists had done only a few small experiments using
carefully scheduled resources.

The objective of our work is to generalize and automate the preparation
of such computing instruments. '..rting from a mathematical description of
an application-for example the equations of motion of the outer planets-a
scientist should be able to use the Toolkit to build a modem version of the
Digital Orrery in about a week of effort, complete with software. With the
same components, and with a similar amount of effort, an engineer should
be able to configure a machine, with software, to optimize the design of a
high-frequency nonlinear circuit such as a phase-locked loop.

3 Applications

The ability to easily configure special-purpose hardware opens up a variety of
important applications that rely upon the ability to perform high-precision
simulations in real-time or faster than real-time.

For example, hardware-in-the-loop techniques are used in the develop-
ment of mechanical systems-the design of a mechanical assembly may be
simplified by instrumenting already-designed physical parts and coupling
these to actuators driven by simulations of other parts of the assembly. Usu-
ally this is done with analog or hybrid computers, but special-purpose digital
systems configured from general components could be cheaper, more accu-
rate, and much more flexible.

In the automatic control of highly nonlinear plants, there are techniques
that rely upon being able to simulate the dynamics of the plant faster than
real time, so as to predict the consequences of proposed control actions. Often
it is desirable to operate a plant close to a point of catastrophic failure. The
extent to which such control strategies can be safely implemented depends
upon the quality of the dynamical model of the plant and upon the speed of
computation available to the control engineer. General-purpose computers

4

with physical characteristics appropriate for use in controllers are inadequate
for this use in all but very slow systems.

Alternatively, consider the situation of an electrical engineer optimizing
the design of an important nonlinear circuit, such as an analog-to-digital
converter. Evaluating each choice of device parameters requires a difficult
simulation that needs many hours of time on a workstation-class computer.
Typically, the engineer will run a simulation overnight and adjust the param-
eters after evaluating the result the next day. It is not uncommon for this
work to continue for several months. With the Toolkit, the engineer could in-
stead invest a week's effort, analyzing the problem and evaluating alternative
Toolkit configurations, to design and configure a special computer to speed
up the simulation. If each simulation required half a minute rather than 5
hours, the optimization could be performed using automatic algorithms; in a
week of continuous running, a program could achieve a better optimum than
manual methods could ever discover.

4 Hardware

The basic Toolkit processor module contains a few arithmetic execution units,
a small high-speed multiport memory, and a simple controller. In our pro-
totype, each processor module may connect to other modules via two bi-
directional I/O ports, each of which may connect to other units (Each module
can connect to about ten others, but we have not yet determined the limits
here). All the modules and communication paths of a Toolkit configuration
are synchronized by a common clock. One can configure any interprocessor
connection graph, within the fan-out limits, by using a processor for every
branch, where the interconnections are the nodes (see figure 1).

In our prototype, each board has a peak scalar floating-point speed of 28
double-precision Mflops, and we expect to be able to sustain performance
of about half this rate (per board) on real problems. The current design is
constructed from off-the-shelf components, and can be easily duplicated at

modest cost.
Figure 2 shows the overall structure of the processor module.
Our goal in designing this board was to use the fastest floating-point

chips available and to provide enough bandwidth to keep them fully utilized.
We chose the two-chip (ALU and multiplier) floating-point chip set made

05

OB 0**

Figure 1: Each processor module has two bidirectional I/O ports. The figure shows how

this allows one to build various network architectures: a mesh, a ring and communicating

clusters.

by Bipolar Integrated Technologies (B.I.T.) and the fastest easily-available
memory (20-ns 16Kx4 SRAM).

TP$. floating-point unit (FTrU) can multiply two 64-bit arguments during

the time it takes to transfer one word from memory. Thus, our desire to
obtain a balanced system, in which the FPU is not starved by the memory,
required that there should be two separate memories. The memories commu-
nicate with the FPU via a 32-entry register array with 5 ports: a read/write
port to each memory, two read ports that supply float hg-point arguments,
and a write port for the floating-point result. The register array is config-
ured from four B.I.T. 5-port 18-bit register-file chips. (This required some
clever design and a delicate clocking scheme.) All of the data paths in our
prototype are byte-parity protected.

Addresses are supplied to each memory by its own address generator,
which was implemented with a 16-bit wide 2901-style microprocessor. Con-
trol for the entire processor module is expressed with a very long instruction
word-168 bits of horizontal code-that are stored in a 16K deep micropro-
gram memory. The memory is implemented with the same kind of 16Kx4

6

AG AG

ISK x 4I 16K x 64I

Register File
32 x 64

Figure 2: This is the overall architecture of the prototype processor module, consisting of
a fast floating-point chip set, a 5-port register file, two memories and address generators,
and a sequencer.

7

SRAMs that we used for the data memories. The microcode memory is ad-
dressed using an 16-bit wide 2910-style microprogram sequencer, which also
provides limited subroutine and branching capabilities.

We chose the very long instruction word format because during each cycle
(about 70 ns) an instruction needs to specify independent operations for the
multiplier, the ALU, transfers among the registers, memories, and the I/O
ports, an instruction for each of the address generators, and an operation for
the sequencer.

Figure 3 shows the layout of the prototype processor module on a 13" x 15"
board, which fits into a standard HP chassis. We expect to assemble a
machine with 5 to 10 of these boards during the summer of 1990.

To build a system with several boards we interconnect their I/O ports
using controlled-impedance transmission lines, terminated at the ends. Each
port can be used to transmit a 64-bit word between processors in two cycles.
As there is no hardware arbitration on the I/O ports, it is necessary that
the programmer develop a convention for controlling access to each commu-
nication channel. To prevent bad programs from burning up the drivers the
ports are implemented using open-collector TTL transceivers that can drive
impedances as low as 30 Ohms.

To avoid reflections the transmission lines are never branched. They
enter the board on one connector, are routed to transceivers and then exit
the board on another connector. Careful layout minimizes stubs along the
interconnect path. The impedance on the board is the same as the impedance
of the ribbon cable used for interconnect.'

Since each board has two I/O ports, rearranging cables permits one to
statically configure any interconnection scheme (within fanout limits), in
which each processor may communicate with two distinct sets of neighbors.
For example, figure 4 shows how one uses this scheme to configure a 4-
processor duster.

The entire machine is intended to be a back-end computer that communi-
cates with a host computer via a parallel interface. Communication with the
host is significantly slower than communication between boards. Thus, the
present prototype is best suited for computations where only a small amount
of data is transferred between the Toolkit processors and the host.

1Henry Wu was instrumental in developing this interconnect technology for our boards.

8

00. m as a IKHU oe O

VOC~~; 0~

M0 lo=uica ---

* 0 w =

110 -....) .. -- - --

00

ml.0.f..0 0*****00*0 ********* ~ 0*C000

0 00900000000 .. 000000000 0 * *00000..........000 00..0....00000..........0 009 00

9H

-~lm U- an" I8W 11888

..........

Mi ~ '

EED[E 0114EDOamEilMh gafiQ C69
Figure... 3:Laou.o.teprtoyp...a1...1" oad

Figure 4: Interconnection between modules is accomplished by transmission lines, al-
lowing one to statically configure any interconnection network in which each processor is
connected to at most two nodes. The figure shows how to connect cables to create two
communicating 4-processor clusters. The boxes marked ' are terminators.

10

T T T

5 Software

5.1 Low-Level Programming Model

Each supercomputer Toolkit processor is programmed as a Very Long In-
struction Word (VLIW) computer. In every cycle, the following operations
can be performed in parallel (see figure 2):

* Two memory transactions, one to left memory and one to right memory.
Each memory can perform a load or store operation with the register file on
each cycle.

* Two memory address computations, to generate the addresses that will
be used to access the memories during the following cycle. The address
generators have their own internal register files to support these operations.

* One program-counter operation - conditional branch, jump, call, push/pop,
etc.

* One floating-point ALU operation and one floating-point multiply op-
eration. The ALU and multiplier receive their inputs and store their results
into the main register-file.

Both arithmetic chips can be operated simultaneously. However, since
both the ALU and the multiplier share register-file ports, it is necessary that
they do not simultaneously require access to the register-file. For example,
while the multiplier is busy doing an operation such as square-root, tLat takes
several cycles to complete, the register-fie ports can be used to supply data
to the ALU. Operations such as multiply-accumulate use internal feedback
paths within the arithmetic chips, thereby freeing up register-file ports.

* Each processor has two I/O ports, each of which is connected to a
communication channel. Two cycles are required to transmit a single 64-bit
word. Accessing an I/O port uses the internal memory bus for one cycle.
Thus, a LEFT I/O operation and a LEFT memory operation can not both
be performed during the same cycle.

When multiple processors are to be used for a single application, several
programming styles are possible. The simplest style is to have the program
counters on all of the boards act in lock-step, effectively forming a multiple
board VLIW machine. An alternative is to program the processors in a
MIMD style. In the MIMD style, the processors run totally independent
programs, exchanging messages via the communication channels as needed.

To support more complex programming styles that combine aspects of

11

both the VLIW and MIMD styles, the hardware provides a wired-or flag for
synchronizing control among multiple boards. For example, in the integration
of differential equations, where different state variables have large variations
in time scale, it is advantageous to use integrators that admit variable and
individual stepsizes. In such systems, some parts of the process can proceed
in VLIW fashion, counting out cycles to maintain synchronization, but other
parts may need explicit synchronization to keep the individual state variable
integrators in step.

5.2 Compilation

We intend to automatically compile and schedule high-performance code for
multiple Toolkit modules and automatically generate an appropriate pattern
of interconnect, but we have not done that yet. Certainly, the task of pro-
gramming parallel machines in general is extremely difficult. However, we
believe that there are special characteristics of common numerical methods
that make automatic scheduling and network generation feasible for a large
class of important scientific and engineering applications.

On the other hand, one can make progress using more modest software
support. The Orrery was programmed using a fairly simple symbolic mi-
crocode assembler. This was possible since the solar-system simulation is
not a very complicated program. The partitioning of the problem into pro-
cesses, the assignment of these processes to processors, and the programming
of the connections between processors can be derived from knowledge of the
problem.

This kind of low-level programming can be done with the Toolkit now.
However, we have developed a compiler that automates the process of build-
ing Orrery-like programs. A user specifies, in a high-level language, the
straight-line program to be executed in each processor separately. These
fragments can be manually glued together to allow simple communication
patterns and to construct loops.

The compiler, built by Andy Berlin and Bill Rozas, generates efficient
code by using partial evaluation [4, 5] to "flatten" a program. This produces
code that contains extremely long straight-line sequences of numerical op-
erations (often several thousand operations long). This makes it feasible to
re-order operations to account for pipeline delays, allowing the floating-point
units to be fully utilized. In addition, this allows data motion instructions,

12

such as memory fetches, to be initiated far in advance of the numerical oper-
ation that needs the data. Work on the Supercomputer Toolkit compiler has
progressed to the point where we can schedule the a solar-system program in
such a way as to keep one processor fully utilized. We are now working on
generalizing this approach to schedule code for multiple Toolkit processors.

5.3 The Dynamicist's Workbench

Ultimately we expect the Toolkit to be the workhorse for the Dynamicist's
Workbench, a tool that will aid scientists and engineers in the simulation
and analysis of dynamical systems. The Workbench includes a spectrum
of computational tools-including numerical methods and symbolic algebra.
These tools are designed so that combined methods, tailored to particular
problems, can be constructed on the fly.

For example, one can specify a circuit optimization problem in terms of
the circuit diagram. One can investigate the dynamics of a double pendulum
in terms of a Lagrangian that describes it. The Dynamicist's Workbench
starts with such descriptions and constructs appropriate numerical proce-
dures for simulations and optimizations. It automatically prepares varia-
tional equations and sensitivity analysis codes.

Parts of the programs generated by the Dynamicist's Workbench are
further compiled by the Toolkit compile- to make microcode for individual
Toolkit boards. Other parts of the Workbench code will be used to construct
host-interface software and analysis code to be run in the host.

6 Summary

The Toolkit project is not meant to address the difficult issues of large-scale
parallel computation. Neither the hardware architecture we propose, nor
the interconnection technology, nor in all likelihood our software ideas can
be expected to scale to systems with many hundreds of processors. Our
goal is to realize means, practical within the limits of current technology, to
provide relatively inexpensive supercomputer performance for a limited, but
important class of problems in science and engineering. We expect even our
prototype implementation to be useful for problems modeled with systems
of ordinary differential equations. Additional Toolkit modules that we hope

13

0

to develop may make other applications feasible, but we have not discussed
applications here that require large memory or for which an appropriate
Toolkit configuration would be bigger than a few boards. Simulation of fluid
flow is one such example. Other examples can be found in [8].

Efforts with similar goals include the NuMesh effort at MIT, and the
iWARP work at CMU [7].

There are other promising strategies for parallel computation, represented
by machines such as the MIT Monsoon Dataflow machine, the Connection
Machine, the Multiflow computer, and many others. These are general-
purpose machines. Our idea differs in that we intend to statically configure
both hardware and software for each particular problem. Thus we require no
general-purpose software (such as an operating system), no routing protocols,
and no hardware to support these features. We believe that when attempting
to obtain maximum performance for a fixed level of technology, we cannot
afford to pay the price of features intended to support generality.

As a result of its high performance, relative ease of programming and low-
cost we expect the Toolkit to have an impact on scientific and engineering
computation.

Acknowledgments

The Supercomputer Toolkit is being developed as a joint research effort
between MIT and Hewlett-Packard. We are grateful to Joel Birnbaum for his
encouragement and support; and to Henry Wu, Robert Grimes, Sam Cox,
Darlene Harrell, Karl Hassur, and Dan Zuras for help with the design of
prototype processor module. We are especially grateful to John McGrory for
his work on the host interface and to Carl Heinzl for his work on diagnostic
software.

References

(1] P. Hut and G.J. Sussman, "Advanced Computing for Science," Scientific
American, vol. 255, no. 10, October 1987.

[2] J. Applegate, M. Douglas, Y. Grsel, P. Hunter, C. Seitz, G.J. Sussman, "A
Digital Orrery," IEEE Trans. on Computers, Sept. 1985.

14 0

[3] G. J. Sussman and J. Wisdom, "Numerical evidence that the motion of Pluto
is chaotic," Science, Volume 241, 22 July 1988.

[4] A. Berlin, "Partial evaluation applied to numerical computation", in proceed-
ings of the 1990 ACM Conference on Lisp and Functional Programming. Also
see "A Compilation strategy for numerical programs based on partial eval-
uation," MIT Artificial Intelligence Laboratory Technical Report TR-1144,
July, 1989.

(5] A. Berlin and D. Weise, "Compiling Scientific Code using Partial Evaluation,"
to appear in IEEE Computer. Also see MIT Artificial Intelligence Laboratory
Memo number 1145, July, 1989.

[6] H. Abelson and G.J. Sussman, "The Dynamicist's Workbench I: Automatic
preparation of numerical experiments," in Symbolic Computation: Applica-
tions to Scientific Computing, R. Grossman (ed.), Frontiers in Applied Math-
ematics, vol. 5, Society for Industrial and Applied Mathematics, Philadephia,
1989.

[7] S. Borkar, R. Cohen, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam,
B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Ur-
banski, and J. Webb, "iWarp: An Integrated Solution to High-speed Parallel
Computing," Supercomputing '88, Kissimmee, Florida, Nov., 1988.

[8] B.J. Adler, "Special Purpose Computers," Academic Press, Inc., 1988.

15

is

